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1 I-Projection in Sanov’s Theorem and Hypothesis Testing

1.1 Properties of I-projection in Sanov’s theorem

Last time, we proved Sanov’s theorem:

Theorem 1.1 (Sanov). Let X1, X2, . . .
iid∼ Q be X -valued random variables, and let Pxn

be the type of xn: Pxn(x) = N(x|xN )
n . Let P be the set of probability distributions on X ,

and assume that E ⊆ P is the closure of its interior. Then

lim
n→∞

1

n
logQn(PXn ∈ E) = −D(P ∗ || Q),

where
P ∗ = arg min

P∈E
D(P || Q).

P ∗ is called the I-projection of Q onto E.

Definition 1.1. Let X be finite. Given Q ∈ P and h : X → R, the probability distribu-
tion of the form

Q(x)eλh(x)∑
a∈X Q(a)eλh(a)

is called an exponential transform of Q.

Proposition 1.1. Suppose E is defined as

E =

{
P :

∑
x

gj(x)P (x) ≥ αj , j = 1, . . . , k

}
.

Then P ∗ will be an exponential transform of Q.
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Proof. Assume Q(x) > 0 for all x. We want

max
∑
x

P (x) log
P (x)

Q(x)
,

subject to 
∑

a P (a)gj(a) ≥ αj , j = 1, . . . , k

P (x) ≥ 0 x ∈X∑
x P (x) = 1.

where the variables are (P (x), x ∈X ) and Q ∈ P is fixed. The correct Lagrangian is

∑
x

P (x) log
P (x)

Q(x)
+

k∑
j=1

λj

(∑
x

P (x)gj(x)− αj

)
−
∑
x

µxP (x) + ν

(∑
x

P (x)− 1

)
.

Write the KKT conditions for this:
λ∗j ≥ 0,

µ∗x ≥ 0,

λ∗j

(
αj −

∑
x

P ∗(x)gj(x)

)
= 0 ∀j,

µ∗xP
∗(x) = 0 ∀x.

Differentiate this to get

log
P ∗(x)

Q(x)
+ 1 +

∑
j

λjgj(x)− µ∗x + ν∗ = 0 ∀x.

Since P ∗(x) cannot be 0 for any x, we must have µ∗x = 0.

We also can show the following.

Theorem 1.2.
lim
n→∞

Qn(X1 = a | PXn ∈ E) = P ∗(a) ∀a ∈X .

Proof. Given δ > 0, let A = {P ∈ E : D(P || Q) ≤ D(P ∗ || Q) + 2δ}. The Sanov theorem
calculation tells us that

Qn(E \A) ≤ (n+ 1)|X |2−n(D
∗(P ||Q)+2δ).

For large enough n,

Qn(A) ≥ 1

(n+ 1)|X |
2−n(D

∗(P ||Q)+δ).
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This proves that
Qn(PXn ∈ A | PXn ∈ E)

n→∞−−−→ 1.

If E is convex, we can use D(P || P ∗) + D(P ∗ || Q) ≤ D(P || Q) for all P ∈ E to show
that

Qn(D(PXn || P ∗) ≤ 2δ | PXn ∈ E)
n→∞−−−→ 1.

Then use Pinsker’s inequality:

D(P1 || P2) ≥
1

2 ln 2
‖P1 − P2‖21 ∀P1, P2.

1.2 The Neyman-Pearson framework of hypothesis testing

Here is the Neyman-Pearson formulation of hypothesis testing with two hypotheses H1

and H2. Under H1, assume that X1, X2, . . . , are iid X -valued with Xi ∼ P1. Under H2,
assume that X1, X2, . . . , are iid X -valued with Xi ∼ P2. Given a “threshold” T , define

An(T ) =

{
xn :

Pn1 (xn)

Pn2 (xn)
> T

}
.

Definition 1.2. A hypothesis test is a function X n → {1, 2}.

Equivalently, it means we choose a set B ⊆X n on which to decide H1, and on Bc we
decide H2.

Let 1B denote the indicator function of B. Observe that

(1An(T )(x
n)− 1B(xn))(Pn1 (xn)− TPn2 (xn)) ≥ 0 ∀xn.

Summing this up over xn,∑
xn∈An(T )

P1(x
n)

︸ ︷︷ ︸
1−Pn1 (Xn /∈ An(T ))︸ ︷︷ ︸

α∗

−T
∑

xn∈An(T )

Pn2 (xn)

︸ ︷︷ ︸
β∗

−
∑
xn∈B

Pn1 (xn)︸ ︷︷ ︸
1−α

+T
∑
xn∈B

Pn2 (xn)︸ ︷︷ ︸
β

≥ 0.

We get
T (β − β∗)− (α∗ − α) ≥ 0,

so if α ≤ α∗, then β ≥ β∗. Hence, if one tries to minimize P(error | H2) given a bound on
P(error | H1), then we use a threshold test.

Theorem 1.3 (Stein’s lemma). For any ε > 0, let

βεn := min
B⊆X n

{βn : αn ≤ ε}.

Then

lim
n→∞

1

n
log βεn = −D(P1 || P2).
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The intuition is that for all δ > 0, the ball Cn = {P ∈ P : D(P || P1) ≤ δ} has
Pn1 (Cn)→ 1 as n→∞ and

lim inf
n→∞

− 1

n
logPn2 (Cn) ≥ D(P1 || P2)− η,

where η → 0 as δ → 0.

1.3 The Bayesian framework of hypothesis testing

In the Bayesian view of hypothesis testing, π1 is the prior probability of H1, and π2 is the
prior of H2. The optimal test is to decide H1 if

π1P
n
1 (xn)

π2Pn2 (xn)
≥ 1.

This is related to information geometry, which is about the space of probability distribu-
tions with separation defined by relative entropy. If P1, P2 ∈ P, then there is a statistically
natural path connecting them, parameterized by λ ∈ [0, 1], where

Pλ(x) =
P λ1 (x)P 1−λ

2 (x)∑
a P

λ
1 (a)P 1−λ

2 (a)
.

Pλ arises by studying the minimum of D(P || P2) subject to D(P || P2)−D(P || P1) = K.
Why this constraint? This is because{

xn :
P1(x

n)

P2(xn)
≥ T

}
=

{
xn : D(Pxn || P2)−D(Pxn || P1) ≥

1

n
log T

}
.
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Theorem 1.4. Assume that π1 > 0 and π2 > 0. Let α∗n = Pn1 (An(π2π1 )c), and let β∗n =
Pn2 (An(π2π1 )). Then

lim
n→∞

1

n
log(π1α

∗
n + π2β

∗
n)→ −D(Pλ∗ || P2),

where D(Pλ∗ || P2) = D(Pλ∗ || P1).
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