Electrical Engineering 229A Lecture 27 Notes

Daniel Raban
December 2, 2021

1 I-Projection in Sanov's Theorem and Hypothesis Testing

1.1 Properties of I-projection in Sanov's theorem

Last time, we proved Sanov's theorem:
Theorem 1.1 (Sanov). Let $X_{1}, X_{2}, \ldots \stackrel{\text { iid }}{\sim} Q$ be \mathscr{X}-valued random variables, and let $P_{x^{n}}$ be the type of $x^{n}: P_{x^{n}}(x)=\frac{N\left(x \mid x^{N}\right)}{n}$. Let \mathcal{P} be the set of probability distributions on \mathcal{X}, and assume that $E \subseteq \mathcal{P}$ is the closure of its interior. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log Q^{n}\left(P_{X^{n}} \in E\right)=-D\left(P^{*} \| Q\right)
$$

where

$$
P^{*}=\underset{P \in E}{\arg \min } D(P \| Q) .
$$

P^{*} is called the I-projection of Q onto E.
Definition 1.1. Let \mathscr{X} be finite. Given $Q \in \mathcal{P}$ and $h: \mathscr{X} \rightarrow \mathbb{R}$, the probability distribution of the form

$$
\frac{Q(x) e^{\lambda h(x)}}{\sum_{a \in \mathscr{X}} Q(a) e^{\lambda h(a)}}
$$

is called an exponential transform of Q.
Proposition 1.1. Suppose E is defined as

$$
E=\left\{P: \sum_{x} g_{j}(x) P(x) \geq \alpha_{j}, j=1, \ldots, k\right\}
$$

Then P^{*} will be an exponential transform of Q.

Proof. Assume $Q(x)>0$ for all x. We want

$$
\max \sum_{x} P(x) \log \frac{P(x)}{Q(x)},
$$

subject to

$$
\begin{cases}\sum_{a} P(a) g_{j}(a) \geq \alpha_{j}, & j=1, \ldots, k \\ P(x) \geq 0 & x \in \mathscr{X} \\ \sum_{x} P(x)=1 . & \end{cases}
$$

where the variables are $(P(x), x \in \mathscr{X})$ and $Q \in \mathcal{P}$ is fixed. The correct Lagrangian is

$$
\sum_{x} P(x) \log \frac{P(x)}{Q(x)}+\sum_{j=1}^{k} \lambda_{j}\left(\sum_{x} P(x) g_{j}(x)-\alpha_{j}\right)-\sum_{x} \mu_{x} P(x)+\nu\left(\sum_{x} P(x)-1\right) .
$$

Write the KKT conditions for this:

$$
\begin{gathered}
\lambda_{j} \geq 0, \\
\mu_{x}^{*} \geq 0, \\
\lambda_{j}^{*}\left(\alpha_{j}-\sum_{x} P^{*}(x) g_{j}(x)\right)=0 \quad \forall j, \\
\mu_{x}^{*} P^{*}(x)=0 \quad \forall x .
\end{gathered}
$$

Differentiate this to get

$$
\log \frac{P^{*}(x)}{Q(x)}+1+\sum_{j} \lambda_{j} g_{j}(x)-\mu_{x}^{*}+\nu^{*}=0 \quad \forall x .
$$

Since $P^{*}(x)$ cannot be 0 for any x, we must have $\mu_{x}^{*}=0$.
We also can show the following.
Theorem 1.2.

$$
\lim _{n \rightarrow \infty} Q^{n}\left(X_{1}=a \mid P_{X^{n}} \in E\right)=P^{*}(a) \quad \forall a \in \mathscr{X} .
$$

Proof. Given $\delta>0$, let $A=\left\{P \in E: D(P \| Q) \leq D\left(P^{*} \| Q\right)+2 \delta\right\}$. The Sanov theorem calculation tells us that

$$
Q^{n}(E \backslash A) \leq(n+1)^{|\mathscr{X}|} 2^{-n\left(D^{*}(P \| Q)+2 \delta\right)}
$$

For large enough n,

$$
Q^{n}(A) \geq \frac{1}{(n+1)^{|\mathscr{X}|}} 2^{-n\left(D^{*}(P \| Q)+\delta\right)} .
$$

This proves that

$$
Q^{n}\left(P_{X^{n}} \in A \mid P_{X^{n}} \in E\right) \xrightarrow{n \rightarrow \infty} 1 .
$$

If E is convex, we can use $D\left(P \| P^{*}\right)+D\left(P^{*} \| Q\right) \leq D(P \| Q)$ for all $P \in E$ to show that

$$
Q^{n}\left(D\left(P_{X^{n}} \| P^{*}\right) \leq 2 \delta \mid P_{X^{n}} \in E\right) \xrightarrow{n \rightarrow \infty} 1 .
$$

Then use Pinsker's inequality:

$$
D\left(P_{1} \| P_{2}\right) \geq \frac{1}{2 \ln 2}\left\|P_{1}-P_{2}\right\|_{1}^{2} \quad \forall P_{1}, P_{2} .
$$

1.2 The Neyman-Pearson framework of hypothesis testing

Here is the Neyman-Pearson formulation of hypothesis testing with two hypotheses H_{1} and H_{2}. Under H_{1}, assume that X_{1}, X_{2}, \ldots, are iid \mathscr{X}-valued with $X_{i} \sim P_{1}$. Under H_{2}, assume that X_{1}, X_{2}, \ldots, are iid \mathscr{X}-valued with $X_{i} \sim P_{2}$. Given a "threshold" T, define

$$
A_{n}(T)=\left\{x^{n}: \frac{P_{1}^{n}\left(x^{n}\right)}{P_{2}^{n}\left(x^{n}\right)}>T\right\} .
$$

Definition 1.2. A hypothesis test is a function $\mathscr{X}^{n} \rightarrow\{1,2\}$.
Equivalently, it means we choose a set $B \subseteq \mathscr{X}^{n}$ on which to decide H_{1}, and on B^{c} we decide H_{2}.

Let $\mathbb{1}_{B}$ denote the indicator function of B. Observe that

$$
\left(\mathbb{1}_{A_{n}(T)}\left(x^{n}\right)-\mathbb{1}_{B}\left(x^{n}\right)\right)\left(P_{1}^{n}\left(x^{n}\right)-T P_{2}^{n}\left(x^{n}\right)\right) \geq 0 \quad \forall x^{n} .
$$

Summing this up over x^{n},

$$
\underbrace{T}_{1-\underbrace{\sum_{x^{n} \in A_{n}(T)} P_{1}\left(X^{n} \notin A_{n}(T)\right)}_{\alpha^{*}}-T \underbrace{\sum_{x^{n} \in A_{n}(T)} P_{2}^{n}\left(x^{n}\right)}_{\beta^{*}}-\underbrace{\sum_{x^{n} \in B} P_{1}^{n}\left(x^{n}\right)}_{1-\alpha}+T} \underbrace{\sum_{x^{n} \in B} P_{2}^{n}\left(x^{n}\right)}_{\beta} \geq 0 .
$$

We get

$$
T\left(\beta-\beta^{*}\right)-\left(\alpha^{*}-\alpha\right) \geq 0,
$$

so if $\alpha \leq \alpha^{*}$, then $\beta \geq \beta^{*}$. Hence, if one tries to minimize $\mathbb{P}\left(\right.$ error $\left.\mid H_{2}\right)$ given a bound on \mathbb{P} (error $\left.\mid H_{1}\right)$, then we use a threshold test.

Theorem 1.3 (Stein's lemma). For any $\varepsilon>0$, let

$$
\beta_{n}^{\varepsilon}:=\min _{B \subseteq \mathscr{X}^{n}}\left\{\beta_{n}: \alpha_{n} \leq \varepsilon\right\} .
$$

Then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \beta_{n}^{\varepsilon}=-D\left(P_{1} \| P_{2}\right) .
$$

The intuition is that for all $\delta>0$, the ball $C_{n}=\left\{P \in \mathcal{P}: D\left(P \| P_{1}\right) \leq \delta\right\}$ has $P_{1}^{n}\left(C_{n}\right) \rightarrow 1$ as $n \rightarrow \infty$ and

$$
\liminf _{n \rightarrow \infty}-\frac{1}{n} \log P_{2}^{n}\left(C_{n}\right) \geq D\left(P_{1} \| P_{2}\right)-\eta
$$

where $\eta \rightarrow 0$ as $\delta \rightarrow 0$.

1.3 The Bayesian framework of hypothesis testing

In the Bayesian view of hypothesis testing, π_{1} is the prior probability of H_{1}, and π_{2} is the prior of H_{2}. The optimal test is to decide H_{1} if

$$
\frac{\pi_{1} P_{1}^{n}\left(x^{n}\right)}{\pi_{2} P_{2}^{n}\left(x^{n}\right)} \geq 1 .
$$

This is related to information geometry, which is about the space of probability distributions with separation defined by relative entropy. If $P_{1}, P_{2} \in \mathcal{P}$, then there is a statistically natural path connecting them, parameterized by $\lambda \in[0,1]$, where

$$
P_{\lambda}(x)=\frac{P_{1}^{\lambda}(x) P_{2}^{1-\lambda}(x)}{\sum_{a} P_{1}^{\lambda}(a) P_{2}^{1-\lambda}(a)}
$$

P_{λ} arises by studying the minimum of $D\left(P \| P_{2}\right)$ subject to $D\left(P \| P_{2}\right)-D\left(P \| P_{1}\right)=K$. Why this constraint? This is because

$$
\left\{x^{n}: \frac{P_{1}\left(x^{n}\right)}{P_{2}\left(x^{n}\right)} \geq T\right\}=\left\{x^{n}: D\left(P_{x^{n}} \| P_{2}\right)-D\left(P_{x^{n}} \| P_{1}\right) \geq \frac{1}{n} \log T\right\}
$$

Theorem 1.4. Assume that $\pi_{1}>0$ and $\pi_{2}>0$. Let $\alpha_{n}^{*}=P_{1}^{n}\left(A_{n}\left(\frac{\pi_{2}}{\pi_{1}}\right)^{c}\right)$, and let $\beta_{n}^{*}=$ $P_{2}^{n}\left(A_{n}\left(\frac{\pi_{2}}{\pi_{1}}\right)\right)$. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(\pi_{1} \alpha_{n}^{*}+\pi_{2} \beta_{n}^{*}\right) \rightarrow-D\left(P_{\lambda^{*}} \| P_{2}\right)
$$

where $D\left(P_{\lambda^{*}} \| P_{2}\right)=D\left(P_{\lambda^{*}} \| P_{1}\right)$.

