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1 I-Projection in Sanov’s Theorem and Hypothesis Testing

1.1 Properties of I-projection in Sanov’s theorem

Last time, we proved Sanov’s theorem:

Theorem 1.1 (Sanov). Let X1, Xo,... i Q be Z -valued random variables, and let Pyn
N
be the type of x™: Pyn(x) = % Let P be the set of probability distributions on X,

and assume that EE C P is the closure of its interior. Then

lim log Q"(Px» € E) = —D(P* || Q),

n—oo N

where
P* =argmin D(P || Q).
PekE

P* is called the I-projection of ) onto F.

Definition 1.1. Let 2 be finite. Given Q € P and h : Z~ — R, the probability distribu-
tion of the form

Qz)eM®
ZaE% Q(a)e)\h(a)

is called an exponential transform of Q.

Proposition 1.1. Suppose E is defined as

E = {P:Zgj(:c)P(x) Zaj,jzl,...,k}.

Then P* will be an exponential transform of Q.



Proof. Assume Q(z) > 0 for all z. We want

P()
maX;P(fﬂ) log Q)
subject to
S Pla)gi(a) > aj, j=1,...k
P(z) >0 re X
Y. Plx)=1.

where the variables are (P(z),x € Z) and @ € P is fixed. The correct Lagrangian is

k
ZP(ZE) log gg; + Z Aj <Z P(x)g;(x) — og) - Z,uxp(x) +v (Z P(z) — 1) .
T J=1 T T T

Write the KKT conditions for this:

>\*j Z 0,
py >0,
Y (aj - ZP*<x>gj<x>) —0 v,

wrP*(z) =0 V.
Differentiate this to get

P*
log (z) —|—1—|—Z)\jgj(x)—u?;—|—y* =0 V.
Q) 12
Since P*(x) cannot be 0 for any x, we must have p = 0. O

We also can show the following.

Theorem 1.2.
lim Q" (X1 =a| Pxn € E) = P*(a) Va e Z.
n—oo

Proof. Given § > 0,let A={P € E:D(P | Q) <D(P*| Q)+ 20}. The Sanov theorem
calculation tells us that

QM(E\ A) < (n+ 1)/# gD (PlQ)+25)
For large enough n,

1 .
nA) > 1 on(D*(PllQ)+)
AR PR VIES
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This proves that

n—o0

Qn(PXn cA | Pxn € E) — 1.

If E is convex, we can use D(P || P*) + D(P* || Q) < D(P || Q) for all P € E to show
that

n—oo

Q"(D(Pxn || P*) <20 | Pxn € B) 2225 1.

Then use Pinsker’s inequality:

1
D(P1|’P2)Zm||P1—P2||% VP, Ps. O

1.2 The Neyman-Pearson framework of hypothesis testing

Here is the Neyman-Pearson formulation of hypothesis testing with two hypotheses H;
and Hs. Under Hi, assume that Xy, Xo,..., are iid 2 -valued with X; ~ P;. Under Hs,
assume that X1, Xo, ..., are iid 2 -valued with X; ~ P,. Given a “threshold” T', define

Ap(T) = {a:” : ggﬁ; > T}.

Definition 1.2. A hypothesis test is a function 2" — {1, 2}.

Equivalently, it means we choose a set B C 2™ on which to decide Hy, and on B¢ we
decide Hs.
Let 15 denote the indicator function of B. Observe that

(La,(ry(z") = 1p(z"))(P'(z") = TPy (a")) 20 Va'
Summing this up over =™,
Y P@Y) -T > Pia")- ) Pr@M+T Y P3(a") >0
xneAn(T) zneAn(T) "eB zneB

P (X" ¢ A(D)) 5 ’

*

[e3

We get

TB-p%)—(a"—a)=0,
so if & < a*, then 8 > B*. Hence, if one tries to minimize P(error | Hy) given a bound on
P(error | Hy), then we use a threshold test.

Theorem 1.3 (Stein’s lemma). For any € > 0, let

B = min (B, :a, <e).

Then )
lim —log 5, = ~D(P || ).

n—o0



The intuition is that for all 6 > 0, the ball C,, = {P € P : D(P || P1) < 40} has
PMCy) — 1asn — oo and

1
lim inf—ﬁ log P3'(Cp) > D(Py || P2) —m,

n—oo

where n — 0 as § — 0.

1.3 The Bayesian framework of hypothesis testing

In the Bayesian view of hypothesis testing, 7 is the prior probability of Hi, and 7o is the
prior of Hy. The optimal test is to decide H; if

n n
mBbE")
mo P (x™) —

This is related to information geometry, which is about the space of probability distribu-
tions with separation defined by relative entropy. If P;, P» € P, then there is a statistically
natural path connecting them, parameterized by A € [0, 1], where

P (oLt

XL PMa)PMNa)

Py, arises by studying the minimum of D(P || P») subject to D(P || P2) —D(P || 1) = K.
Why this constraint? This is because

P (™ 1
{a:" : 1(33n) > T} = {x” : D(Pyn || Py) — D(Pyn || Py) > ElogT}.



Theorem 1.4. Assume that mp > 0 and mp > 0. Let ay, = P['(An(32)¢), and let B, =
PQ”(AR(%)) Then

1
lim - log(mia, +ma6;) — —D(Py- || Py)

n—oo

where D(Py || Pa) = D(Py« || P1).
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